Bayesian Methods to create Anti-spammer
We can construct P(Spam | Word) for every (meaningful) word we encounter
during training.
Then multiply these together when analyzing a new mail to get the probability of it being spam.
Assumes the presence of different words are independent of each other - one reason this is called “Naive Bayes”
理论就是: 不考虑词和词之间的关系,简单的将每个词贡献的’spam‘值算出来,最后根据所有的这些词贡献出的’spam’值来分析新的邮件。
下面则是代码
首先是使用pandas读入数据,然后使用scikit-learn 来build 一个spam classifier, 最后使用这个spam classifier 来predict两个字符串到底应该归类spam 或者ham.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Author: hezhb
# Created Time: Tue 01 May 2018 11:49:35 AM CST
import os
import io
import numpy as np
from pandas import DataFrame
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
def readFiles(path):
for root, dirnames, filenames in os.walk(path):
for filename in filenames:
path = os.path.join(root, filename)
inBody = False
lines = []
f = io.open(path, 'r', encoding='latin1')
for line in f:
if inBody:
lines.append(line)
elif line == '\n':
inBody = True
f.close()
message = '\n'.join(lines)
yield path, message
def dataFrameFromDirectory(path, classification):
rows = []
index = []
for filename, message in readFiles(path):
rows.append({'message':message, 'class':classification})
index.append(filename)
return DataFrame(rows, index=index)
PATH='./hands-on/emails/'
data = DataFrame({'message':[], 'class':[]})
data = data.append(dataFrameFromDirectory(PATH+'spam', 'spam'))
data = data.append(dataFrameFromDirectory(PATH+'ham', 'ham'))
#print(data.head())
"""
Now we will use CountVectorizer to split up each message into its list of words
and throw that into a MultinomialNB classifier, call fit() and we've got
a trained spam filter ready to go.
"""
vectorizer = CountVectorizer(encoding='latin1')
counts = vectorizer.fit_transform(data['message'].values)
classifier = MultinomialNB()
targets = data['class'].values
classifier.fit(counts, targets)
#Now can try this classifier out
examples = ['Free viagra Now', 'Hi Bob, how about a game of golf tommorrow.']
example_counts = vectorizer.transform(examples)
predictions = classifier.predict(example_counts)
print(predictions)